Cell-type-dependent activity of the ubiquitous transcription factor USF in cellular proliferation and transcriptional activation.

نویسندگان

  • Y Qyang
  • X Luo
  • T Lu
  • P M Ismail
  • D Krylov
  • C Vinson
  • M Sawadogo
چکیده

USF1 and USF2 are basic helix-loop-helix transcription factors implicated in the control of cellular proliferation. In HeLa cells, the USF proteins are transcriptionally active and their overexpression causes marked growth inhibition. In contrast, USF overexpression had essentially no effect on the proliferation of the Saos-2 osteosarcoma cell line. USF1 and USF2 also lacked transcriptional activity in Saos-2 cells when assayed by transient cotransfection with USF-dependent reporter genes. Yet, there was no difference in the expression, subcellular localization, or DNA-binding activity of the USF proteins in HeLa and Saos-2 cells. Furthermore, Gal4-USF1 and Gal4-USF2 fusion proteins activated transcription similarly in both cell lines. Mutational analysis and domain swapping experiments revealed that the small, highly conserved USF-specific region (USR) was responsible for the inactivity of USF in Saos-2 cells. In HeLa, the USR serves a dual function. It acts as an autonomous transcriptional activation domain at promoters containing an initiator element and also induces a conformational change that is required for USF activity at promoters lacking an initiator. Taken together, these results suggest a model in which the transcriptional activity of the USF proteins, and consequently their antiproliferative activity, is tightly controlled by interaction with a specialized coactivator that recognizes the conserved USR domain and, in contrast to USF, is not ubiquitous. The activity of USF is therefore context dependent, and evidence for USF DNA-binding activity in particular cells is insufficient to indicate USF function in transcriptional activation and growth control.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DNA-binding activity of the transcription factor upstream stimulatory factor 1 (USF-1) is regulated by cyclin-dependent phosphorylation.

The ubiquitous transcription factor upstream stimulatory factor (USF) 1 is a member of the bzHLH (leucine zipper-basic-helix-loop-helix) family, which is structurally related to the Myc family of proteins. It plays a role in the regulation of many genes, including the cyclin B1 gene, which is active during the G2/M and M phases of the cell cycle and may also play a role in the regulation of cel...

متن کامل

Biological function of the USF family of transcription factors

USF i s a family of ubiquitous transcription factors that are structurally related to the Myc oncoproteins and also share with Myc a common DNA-binding specificity. While the structure and DNA-binding properties of the USF transcription factors are well characterized, their biological function i s only beginning to emerge. Experiments in cultured cel ls suggest that USF can antagonize the activ...

متن کامل

Transcriptional Coactivator CBP Facilitates Transcription Initiation and Reinitiation of HTLV-I and Cyclin D2 Promoter

HTLV-I is the etiologic agent for adult T-cell leukemia/lymphoma (ATL) and HTLV-I-associated myelopathy/tropical spastic paraparesis (HAM/TSP). Taxi, the major activator of this virus, is a 40- kDa (353 amino acid) phosphoprotein, predominantly localized in the nucleus of the host cell, which functions to trans-activate both viral and cellular promoters. Recently it has been shown that HTLV-I a...

متن کامل

I-10: Transcriptomics in Oocyte Mediated Cellular Reprogramming

a:4:{s:10:"Background";s:1707:"Early embryonic development in mammals begins in transcriptional silence with an oocyte-mediated transcriptional reprogramming of parental gametes occurs during a so called across-the-board process of “erase-and-rebuild”. In this process, the parental transcription programs are erased long before (maternal) or soon thereafter (paternal) fertilization to generate a...

متن کامل

Coexamination of site-specific transcription factor binding and promoter activity in living cells.

Previously, we have used a chromatin cross-linking and immunoprecipitation protocol for the analysis of Myc and USF binding to the cad promoter. The adaptation of this technique for the study of mammalian transcription factors was a big step forward in the analysis of transcription factor family member specificity, allowing for the first time a definitive knowledge of which factor binds to a pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular and cellular biology

دوره 19 2  شماره 

صفحات  -

تاریخ انتشار 1999